Estimating Electron Proton Instability Thresholds M. Blaskiewicz

1 Introduction

Very fast, high frequency, transverse instabilities have been observed in the Los Alamos PSR[1, 2, 3] and the AGS Booster[4].

- instability can "hold off" for 100 μ s
- e-folding time ~ 10 turns.
- 50% beam loss in $\sim 20 \ \mu s$.
- if due to Z_{\perp} then $Re(Z_{\perp}) \sim 10 \mathrm{M}\Omega/\mathrm{m}$, and broadband
- ω_c strong function of tune/threshold current.
- $\omega_c = \omega_c(t)$ during instability

Could these be due to trapped electrons?[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. For round coasting beams the coupled equations of motion are

$$\ddot{Y}_p = -\omega_\beta^2 Y_p + \Omega_p^2 (Y_e - Y_p)$$

$$\ddot{Y}_e = -\omega_e^2 (Y_e - Y_p)$$

with frequencies

$$\Omega_e^2 = \frac{e\lambda_p}{2\pi a^2 \epsilon_0 m_e} \qquad \Omega_p^2 = \frac{f m_e}{\gamma m_p} \Omega_e^2$$

where λ_p is the proton line density and $f = \lambda_e/\lambda_p$.

Data from the AGS Booster

machine parameters

parameter circumference kinetic energy rms frequency spread nominal betatron tunes beam pipe radius injected beam radius nominal chromaticity sextupoles off rf voltage (h = 1) linac RF frequency injected pulse length revolution period

<u> </u>
Booster Study
$2\pi R = 202\mathrm{m}$
$200 \mathrm{MeV}$
$\approx 300 \mathrm{Hz}$
$Q_x = 4.8, Q_y = 4.95$
$b = 5 \mathrm{cm}$
$\approx 3 \mathrm{cm}$
$Q_x' = -3, Q_y' = -1$
$Q_x' = -7.5, Q_y' = -2.6$
0V (60 kV nominal)
$200\mathrm{MHz}$
$200 \text{ to } 450 \mu \text{s}$
$1207\mathrm{ns}$

PSR
90.2m
$797 \mathrm{MeV}$
$\approx 20 \mathrm{kHz}$ at $18 \mathrm{kV}$
$Q_x = 3.16, Q_y = 2.14$
b = 5 cm
$\approx 3 \mathrm{cm}$
$Q_x' = -4, Q_y' = -2$
same
$\leq 18 \mathrm{kV}$
$400\mathrm{MHz}$
$500 \mu \mathrm{s}$
$358 \mathrm{ns}$

Diagnostics:

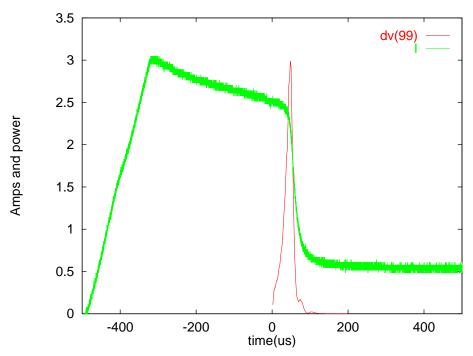
- current transformer, $0 \rightarrow 100 \text{ kHz}$
- wall current monitor $1 \rightarrow 200 \text{ MHz}$
- horizontal and vertical split can capacitive BPMs 1 \rightarrow 200 MHz

BPMs were sampled at 1GHz. Sum and difference good to $\tau = 1$ ns. Checked FFTs, Mountain ranges, narrow band power P_n .

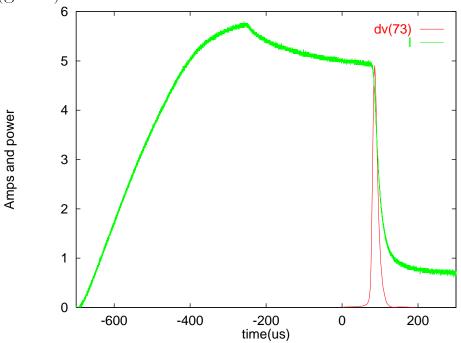
$$F_{n+1} = (\cos(\tilde{\omega}\tau)F_n - \sin(\tilde{\omega}\tau)G_n)e^{-\alpha\tau} + S_n$$
 (1)

$$G_{n+1} = (\sin(\tilde{\omega}\tau)F_n + \cos(\tilde{\omega}\tau)G_n)e^{-\alpha\tau}$$
 (2)

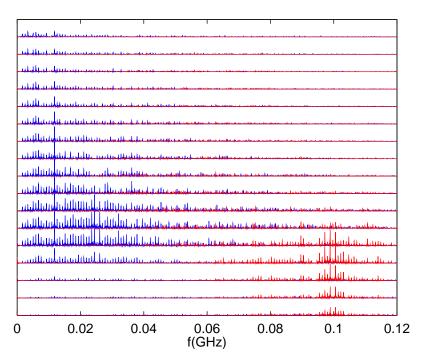
$$P_{n+1} = e^{-\tau/\tau_0} P_n + G_n^2 \tag{3}$$



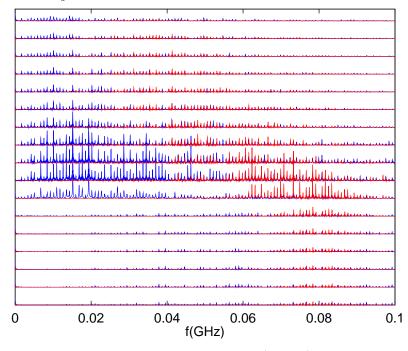
 $Q_x = 4.75$, $Q_y = 4.50$, sextupoles off power in narrow band vertical difference (red), and beam current (green).



 $Q_x = 4.80$, $Q_y = 4.95$, sextupoles off power in narrow band vertical difference (red), and beam current (green).

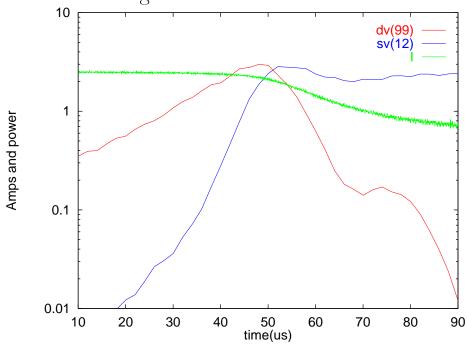


Spectral amplitude of vertical sum (blue) and difference (red). $Q_x = 4.75, Q_y = 4.5$, sextupoles off



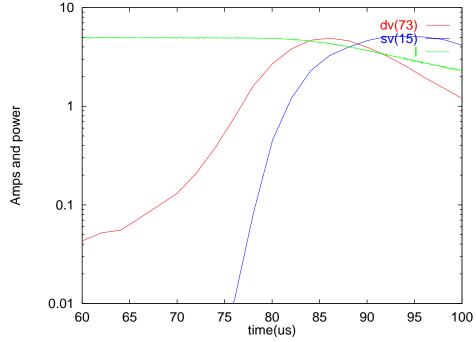
Spectral amplitude of vertical sum (blue) and difference (red). $Q_x = 4.8$, $Q_y = 4.95$, sextupoles off FFTs used ten turns of data (12 μ s between traces).

Narrow band signals



 $Q_x = 4.75, Q_y = 4.5,$ sextupoles off

Net smearing time $\approx 2 \ \mu s$.



 $Q_x = 4.8, Q_y = 4.95$, sextupoles off

Impedance estimate

Transverse growth rate of a cold coasting beam,

$$Im(\Omega) = \frac{qcI_{peak}Re(Z_{\perp})}{4\pi E_0 Q_{\beta}},\tag{4}$$

For $Q_y = 4.5$, e-folding time of 11.4μ s implies $Re(Z_{\perp}) = 5.4 \text{M}\Omega/\text{m}$. Many unstable lines implies broad band.

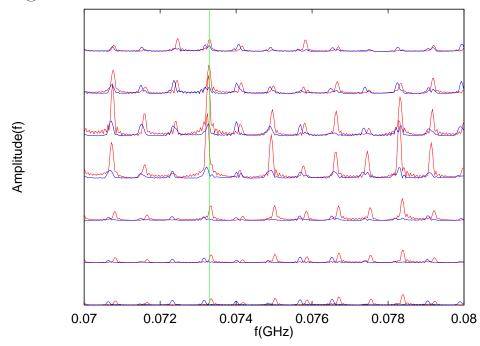
Coherent transverse space charge impedance with $\beta \gamma = 0.69$.

$$-i\frac{RZ_0}{\beta^2\gamma^2b^2} = -i8.4\mathrm{M}\Omega/\mathrm{m}.$$

For $Q_y = 4.95$, $d \log P/dt$, peaks at 350/ms.

If Z_{\perp} then $Re(Z_{\perp}) = 8.8 M\Omega/m$.

High resolution of second case



The vertical line is at 73.3MHz. The nearest vertical peak shifts down by 90 kHz = $0.11 f_{rev}$ during the instability. Electron focusing?

Simple threshold estimate assumes

- ullet Space Charge Tune shift $\Delta Q_{sc}\gg$ others, same for ep and Z_{\perp}
- Relevant Betatron sideband Frequency \approx electron bounce frequency $f_{rev}Q_e$
- Coasting beam the shold

Threshold condition for semi-circular momentum distribution [7]

$$2\Delta Q_{sc,max} \lesssim |\eta| Q_e \left| \frac{\Delta p}{p} \right|_{HW@B} \tag{5}$$

For bunched beams take momentum spread from rf

$$|\eta|\beta^2 \frac{E_T}{q} \left| \frac{\Delta p}{p} \right|^2 = \frac{V_{rf}}{\pi} (1 - \cos \hat{\phi}) \tag{6}$$

For fixed transverse beam size there is a linear relationship between threshold intensity and gap voltage.

Setting
$$I_{avg} = I_{peak}, V_{rf} \approx 2V_{true}$$

Macek's plot.

Assume the instability is due to electrons.

For coasting beams near threshold the dispersion relation gives.

$$Y_e/Y_p \sim Q_e \gg 1$$

A simple bunched beam model gives a similar result.

Assume the proton centroid at a fixed position oscillates at the electron bounce frequency.

$$y_p = \hat{y}_p e^{-i\omega_e t}$$

Take electron force due to protons

$$\ddot{y}_e + \omega_e^2 (y_e - y_p) = 0$$

$$y_e(0) = 0 \rightarrow y_e(t) \approx \frac{i\omega_e t}{2} y_p$$

Since $\omega_e \tau_b \sim Q_e$ get a similar result.

So, Strong Secondary Emission is necessary for fast loss (TiN).

Coasting beam models have been studied, fractional neutralization is the major unknown. For bunched beams assume a large source of electrons as the bunch passes (PSR data).

They repel each other and the cloud expands.

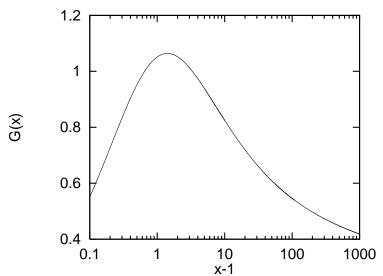
Take a uniform initial density, n_0 with negligible velocity.

$$m_e \frac{d^2 r}{dt^2} = \frac{e\lambda_e(r)}{2\pi\epsilon_0 r} \tag{7}$$

density remains uniform during expansion

Define $T(r_0) = \text{time when } e^- \text{ starting at } r_0 \text{ reach } r = b, \text{ the wall.}$

$$T(r_0) = bG(b/r_0)\sqrt{\frac{2\epsilon_0 m_e}{e^2 n_0 r_0^2}}, \qquad G(x) = \frac{1}{x} \int_1^x \frac{dy}{\sqrt{\ln y}}$$
 (8)



The electron charge per meter at time T after bunch passage is

$$e\pi n_0 r_0^2 = \left(\frac{bG}{T}\right)^2 \frac{2\pi \epsilon_0 m_e}{e} = 28\mu \text{C/m} \left(\frac{bG}{cT}\right)^2 \tag{9}$$

Density after gap of duration T depends on the intital density only through G. b/T similar in PSR and SNS.

Bunched Beam Threshold Simulations. Same algorithms as [12].

- Take electron density from gap length (G = 1).
- Initial electron amplitude = 0 (capture by beam potential).
- Linear tranverse centroid force law pseudo wake potential (eigenmodes).
- Linear space charge forces in proton beam (destabilizing!)
- linear rf restoring force (simplify)
- Want to find the *threshold*, nonlinear beyond.

Ideal equations of motion

Longitudinal: $\tau(\theta) = \omega_0 t - \theta$, where ω_0 is the angular revolution frequency, t is time and θ is azimuth.

$$\frac{d^2\tau}{d\theta^2} = \frac{dv}{d\theta} = -Q_s^2\tau = -\frac{dU(\tau)}{d\tau}.$$

Transverse:

$$\frac{d^2x}{d\theta^2} = -Q_x(v)^2 x + C_{sc}\rho(\theta,\tau)(x - \langle x(\theta,\tau) \rangle) + C_{ep}y_e(\tau)$$

Space charge forces are proportional to

$$C_{sc} \approx 2Q_x \Delta Q_{sc}/\rho_{max}$$

where

$$\Delta Q_{sc} = |\text{max sc tune shift}|$$

The electron centroid is calculated once per turn at $\theta = 0$ using

$$\frac{d^{2}y_{e}}{d^{2}\tau} = Q_{e}^{2}(\theta, \tau) \left[\langle x(\theta, \tau) \rangle - y_{e}(\tau) \right]$$

The equations can be simulated using macro-particles

$$\frac{d^2 \tau_k}{d\theta^2} = -Q_s^2 \tau_k, \quad k = 1, 2, \dots N \sim 10^4$$

$$\frac{d^2 x_k}{d\theta^2} = -Q_x^2 x_k + \frac{C_{sc}}{N} \sum_{j=1}^{N} (x_k - x_j) \lambda(\tau_k - \tau_j) + C_{ep} y_e(\tau_k)$$

Update τ_k s once per turn with a simple rotation. For x_k and $p_k \equiv dx_k/d\theta$ use a transfer matrix followed by space charge $M \gtrsim 4Q_x$ times per turn.

$$F_{sc,k} = \hat{C}_{sc} \sum_{j=1}^{N} (x_k - x_j) \lambda (\tau_k - \tau_j)$$

For nice $\lambda(\tau)$ the space charge sums can be done in $O(N \log N)$ operations. Details can be found in [12].

The kick from electrons is applied once per turn

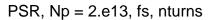
$$F_{ep,k} = \hat{C}_{ep}[y_e(\tau_k) - \bar{x}(\tau_k)]$$

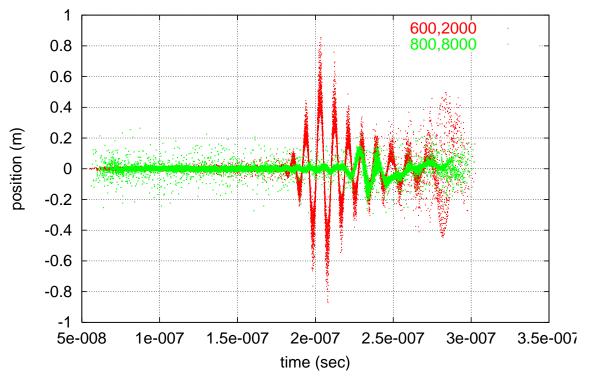
with $y_e(0) = \dot{y}_e(0) = 0$ and a numerical solution of

$$\frac{d^{2}y_{e}}{d^{2}\tau} = \hat{Q}_{e}^{2} \sum_{j=1}^{N} (x_{j} - y_{e}(\tau)) \lambda(\tau_{j} - \tau)$$

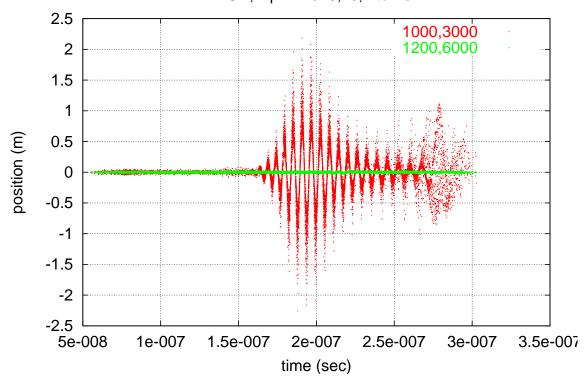
In practice there are 3 important numerical parameters.

- 1) the number of macro-particles, N
- 2) the smoothing length used for the space charge and electron forces
- 3) the number of space charge updates per turn, M (less important)





PSR, Np = 4.e13, fs, nturns



Factors leading to increased growth rate

- increasing intensity
- increasing Z_{sc} [13] for $Z_{sc,i} \gg Z_{sc,c}$ (beam radius \ll pipe radius) $Z_{sc,i} - Z_{sc,c}$ is primary factor
- increasing chromaticity below transition, $\xi < 0$ stabilizes seems stronger than coasting beam estimate suggests
- reducing f_{synch} (gap volts)
- reducing gap length (more electrons)

For 30k macro-particles and a 1 ns smoothing length

intensity	$f_{synch}Hz$	growth rate ms ⁻¹
6×10^{13}	1600	3.5
4×10^{13}	1600	1.3
2×10^{13}	1600	< 0.5
4×10^{13}	800	10
2×10^{13}	800	3.5
1×10^{13}	800	1.2

From Macek's plot get

$$f_{synch} = 900 \text{Hz} (6 \text{ kV}) \text{ for } 2 \times 10^{13}$$

 $f_{synch} = 1500 \text{Hz} (16 \text{ kV}) \text{ for } 4 \times 10^{13}$

Conclusions and Questions

- Impedance driven instability is hard to believe
- ep simulations have reasonable agreement with PSR data correct order of magnitude correct variation with machine parameters

 How far from continuum limit?
- Are SNS simulations appropriate yet?

 coasting beam suggests factor of 4 safety margin
 psychology

References

- [1] D. Neuffer et. al. NIM **A321** p1 (1992).
- [2] M. A. Plum *et. al* PAC97 p 1611.
- [3] V. Danilov et. al PAC99 TUA 52.
- [4] M. Blaskiewicz PAC 99 TUP 60.
- [5] B.V. Chirikov, Sov. Atomic Energy, 19 p1149 (1965).
- [6] E. Keil, B. Zotter, CERN/ISR-TH/71-58, (1971).
- [7] L. J. Laslett, A. M. Sessler, D. Möhl, NIMA, **121**, p517, 1974.
- [8] R. C. Davidson, H. Qin, P. H. Stoltz, Phys Rev ST Accel Beams, 054401, 1999.
- [9] A. Ruggiero, M. Blaskiewicz, PAC 97 p1581 (1998).

- [10] H. G. Hereward, CERN 71-15 (1971).
- [11] G.V. Stupakov, LHC Project Report 141 (1997).
- [12] M. Blaskiewicz, Phys Rev S. T Accel Beams August 1998.
- [13] R. Macek, AIP conf 448, pg 116, 1998.